Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular characterization of a stress-induced NAC gene, GhSNAC3, from Gossypium hirsutum.

Identifieur interne : 000171 ( Main/Exploration ); précédent : 000170; suivant : 000172

Molecular characterization of a stress-induced NAC gene, GhSNAC3, from Gossypium hirsutum.

Auteurs : Zhan-Ji Liu [République populaire de Chine] ; Fei Li ; Li-Guo Wang ; Ren-Zhong Liu ; Jun-Jun Ma ; Ming-Chuan Fu

Source :

RBID : pubmed:29932074

Descripteurs français

English descriptors

Abstract

NAC genes, specific to plants, play important roles in plant development as well as in response to biotic and abiotic stresses. Here, a novel gene encoding a NAC domain, named as GhSNAC3, was isolated from upland cotton (Gossypium hirsutum L.). Sequence analyses showed that GhSNAC3 encodes a protein of 346 amino acids with an estimated molecular mass of 38.4 kDa and pI of 8.87. Transient localization assays in onion epidermal cells confirmed GhSNAC3 is a nuclear protein. Transactivation studies using a yeast system revealed that GhSNAC3 functions as a transcription activator. Quantitative real-time polymerase chain reaction analysis indicated that GhSNAC3 was induced by high salinity, drought and abscisic acid treatments. We overexpressed GhSNAC3 in tobacco by using Agrobacterium-mediated transformation. Transgenic lines produced longer primary roots and more fresh weight under salt and drought stresses as compared to wild-type plants. Collectively, our results indicated that overexpression of GhSNAC3 in tobacco can enhance drought and salt tolerances.

PubMed: 29932074


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular characterization of a stress-induced NAC gene,
<i>GhSNAC3</i>
, from
<i>Gossypium hirsutum</i>
.</title>
<author>
<name sortKey="Liu, Zhan Ji" sort="Liu, Zhan Ji" uniqKey="Liu Z" first="Zhan-Ji" last="Liu">Zhan-Ji Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China. scrcliuzhanji@sina.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100</wicri:regionArea>
<wicri:noRegion>Jinan 250100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Fei" sort="Li, Fei" uniqKey="Li F" first="Fei" last="Li">Fei Li</name>
</author>
<author>
<name sortKey="Wang, Li Guo" sort="Wang, Li Guo" uniqKey="Wang L" first="Li-Guo" last="Wang">Li-Guo Wang</name>
</author>
<author>
<name sortKey="Liu, Ren Zhong" sort="Liu, Ren Zhong" uniqKey="Liu R" first="Ren-Zhong" last="Liu">Ren-Zhong Liu</name>
</author>
<author>
<name sortKey="Ma, Jun Jun" sort="Ma, Jun Jun" uniqKey="Ma J" first="Jun-Jun" last="Ma">Jun-Jun Ma</name>
</author>
<author>
<name sortKey="Fu, Ming Chuan" sort="Fu, Ming Chuan" uniqKey="Fu M" first="Ming-Chuan" last="Fu">Ming-Chuan Fu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29932074</idno>
<idno type="pmid">29932074</idno>
<idno type="wicri:Area/Main/Corpus">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000166</idno>
<idno type="wicri:Area/Main/Curation">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000166</idno>
<idno type="wicri:Area/Main/Exploration">000166</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular characterization of a stress-induced NAC gene,
<i>GhSNAC3</i>
, from
<i>Gossypium hirsutum</i>
.</title>
<author>
<name sortKey="Liu, Zhan Ji" sort="Liu, Zhan Ji" uniqKey="Liu Z" first="Zhan-Ji" last="Liu">Zhan-Ji Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China. scrcliuzhanji@sina.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100</wicri:regionArea>
<wicri:noRegion>Jinan 250100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Fei" sort="Li, Fei" uniqKey="Li F" first="Fei" last="Li">Fei Li</name>
</author>
<author>
<name sortKey="Wang, Li Guo" sort="Wang, Li Guo" uniqKey="Wang L" first="Li-Guo" last="Wang">Li-Guo Wang</name>
</author>
<author>
<name sortKey="Liu, Ren Zhong" sort="Liu, Ren Zhong" uniqKey="Liu R" first="Ren-Zhong" last="Liu">Ren-Zhong Liu</name>
</author>
<author>
<name sortKey="Ma, Jun Jun" sort="Ma, Jun Jun" uniqKey="Ma J" first="Jun-Jun" last="Ma">Jun-Jun Ma</name>
</author>
<author>
<name sortKey="Fu, Ming Chuan" sort="Fu, Ming Chuan" uniqKey="Fu M" first="Ming-Chuan" last="Fu">Ming-Chuan Fu</name>
</author>
</analytic>
<series>
<title level="j">Journal of genetics</title>
<idno type="eISSN">0973-7731</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (pharmacology)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Gossypium (genetics)</term>
<term>Nuclear Proteins (genetics)</term>
<term>Plant Growth Regulators (pharmacology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Salinity (MeSH)</term>
<term>Salt Tolerance (genetics)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Sequence Homology, Nucleic Acid (MeSH)</term>
<term>Tobacco (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (pharmacologie)</term>
<term>Facteur de croissance végétal (pharmacologie)</term>
<term>Gossypium (génétique)</term>
<term>Protéines nucléaires (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Salinité (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Similitude de séquences d'acides nucléiques (MeSH)</term>
<term>Sécheresses (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Tabac (génétique)</term>
<term>Tolérance au sel (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Nuclear Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Abscisic Acid</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Gossypium</term>
<term>Salt Tolerance</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Gossypium</term>
<term>Protéines nucléaires</term>
<term>Protéines végétales</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Tabac</term>
<term>Tolérance au sel</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide abscissique</term>
<term>Facteur de croissance végétal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Droughts</term>
<term>Plants, Genetically Modified</term>
<term>Salinity</term>
<term>Sequence Homology, Amino Acid</term>
<term>Sequence Homology, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Salinité</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Sécheresses</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NAC genes, specific to plants, play important roles in plant development as well as in response to biotic and abiotic stresses. Here, a novel gene encoding a NAC domain, named as
<i>GhSNAC3</i>
, was isolated from upland cotton (
<i>Gossypium hirsutum</i>
L.). Sequence analyses showed that
<i>GhSNAC3</i>
encodes a protein of 346 amino acids with an estimated molecular mass of 38.4 kDa and pI of 8.87. Transient localization assays in onion epidermal cells confirmed GhSNAC3 is a nuclear protein. Transactivation studies using a yeast system revealed that
<i>GhSNAC3</i>
functions as a transcription activator. Quantitative real-time polymerase chain reaction analysis indicated that
<i>GhSNAC3</i>
was induced by high salinity, drought and abscisic acid treatments. We overexpressed
<i>GhSNAC3</i>
in tobacco by using
<i>Agrobacterium</i>
-mediated transformation. Transgenic lines produced longer primary roots and more fresh weight under salt and drought stresses as compared to wild-type plants. Collectively, our results indicated that overexpression of
<i>GhSNAC3</i>
in tobacco can enhance drought and salt tolerances.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29932074</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">0973-7731</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>97</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of genetics</Title>
<ISOAbbreviation>J Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular characterization of a stress-induced NAC gene,
<i>GhSNAC3</i>
, from
<i>Gossypium hirsutum</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>539-548</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>NAC genes, specific to plants, play important roles in plant development as well as in response to biotic and abiotic stresses. Here, a novel gene encoding a NAC domain, named as
<i>GhSNAC3</i>
, was isolated from upland cotton (
<i>Gossypium hirsutum</i>
L.). Sequence analyses showed that
<i>GhSNAC3</i>
encodes a protein of 346 amino acids with an estimated molecular mass of 38.4 kDa and pI of 8.87. Transient localization assays in onion epidermal cells confirmed GhSNAC3 is a nuclear protein. Transactivation studies using a yeast system revealed that
<i>GhSNAC3</i>
functions as a transcription activator. Quantitative real-time polymerase chain reaction analysis indicated that
<i>GhSNAC3</i>
was induced by high salinity, drought and abscisic acid treatments. We overexpressed
<i>GhSNAC3</i>
in tobacco by using
<i>Agrobacterium</i>
-mediated transformation. Transgenic lines produced longer primary roots and more fresh weight under salt and drought stresses as compared to wild-type plants. Collectively, our results indicated that overexpression of
<i>GhSNAC3</i>
in tobacco can enhance drought and salt tolerances.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Zhan-Ji</ForeName>
<Initials>ZJ</Initials>
<AffiliationInfo>
<Affiliation>Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China. scrcliuzhanji@sina.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Li-Guo</ForeName>
<Initials>LG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ren-Zhong</ForeName>
<Initials>RZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Jun-Jun</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Ming-Chuan</ForeName>
<Initials>MC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>India</Country>
<MedlineTA>J Genet</MedlineTA>
<NlmUniqueID>2985113R</NlmUniqueID>
<ISSNLinking>0022-1333</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009687">Nuclear Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003368" MajorTopicYN="N">Gossypium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009687" MajorTopicYN="N">Nuclear Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29932074</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D344-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23161676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet. 2016 Sep;95(3):565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27659326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Jun 28;5(6):e11335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20596258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Dec 17;294(5):1351-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W337-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24799431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1993 Oct;14(10):1023-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8125050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 29;8(7):e69847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23922821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 May;33(5):524-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25893780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jul;29(7):1748-1772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28684428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Oct;27(10 ):1027-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25014590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Sep;43(5):745-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(6):903-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1296-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2009 Nov;19(11):1279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19752887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 May 15;31(10):2534-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Sep 03;4:248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Apr 19;85(2):159-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8612269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Dec;84(6):1114-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26518251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 15;26(2):290-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2003 Dec 31;10(6):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15029955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 May;33(5):531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25893781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Nov;66(21):6803-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26261267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2481-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Oct;22(10):1227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Nov 24;314(5803):1298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17124321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2010 Oct 1;465(1-2):30-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20600702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Mar 8;227(4691):1229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1724-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 May 05;6:288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25999964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 Dec 1;531(2):220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Dec 20;492(7429):423-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23257886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24145438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2013 Jul;55(7):663-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23756542</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fu, Ming Chuan" sort="Fu, Ming Chuan" uniqKey="Fu M" first="Ming-Chuan" last="Fu">Ming-Chuan Fu</name>
<name sortKey="Li, Fei" sort="Li, Fei" uniqKey="Li F" first="Fei" last="Li">Fei Li</name>
<name sortKey="Liu, Ren Zhong" sort="Liu, Ren Zhong" uniqKey="Liu R" first="Ren-Zhong" last="Liu">Ren-Zhong Liu</name>
<name sortKey="Ma, Jun Jun" sort="Ma, Jun Jun" uniqKey="Ma J" first="Jun-Jun" last="Ma">Jun-Jun Ma</name>
<name sortKey="Wang, Li Guo" sort="Wang, Li Guo" uniqKey="Wang L" first="Li-Guo" last="Wang">Li-Guo Wang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liu, Zhan Ji" sort="Liu, Zhan Ji" uniqKey="Liu Z" first="Zhan-Ji" last="Liu">Zhan-Ji Liu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000171 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000171 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29932074
   |texte=   Molecular characterization of a stress-induced NAC gene, GhSNAC3, from Gossypium hirsutum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29932074" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024